1. The phenomenon: exhaustivity

I. Examples

- (1) a. [John or Mary]_F was at the party. b. [John]_F was. \rightarrow Mary wasn't.
- (2) a. Who was at the party? b. Some of the linguists. \rightarrow Not many of them.
- (3) a. How many marbles are in the vase?
 b. Five. → Not more than five.

I will focus on (1).

II. The problem for the Gricean approach

('Gricean' = 'as a conversational implicature'.)

Conversational implicature: what follows from what is said plus the assumption that speaker is cooperative (Grice, 1975)

Typical 'Gricean' derivation of exhaustivity for (1):

- 1. She didn't say "John and Mary were both there".
- 2. She should have said so, had she believed it. (Quantity)

3. She lacks the belief that Mary was there.

The *epistemic step* (Sauerland, 2005)

4. She believes that Mary was not there.

The epistemic step is a/the major problem for the Gricean approach to exhaustivity (Chierchia, *et al.*, 2008).

III. Toward a solution

An insightful minimal pair with (1):

(4) a. [John or Mary]_F was at the party.
b. At least John was. / John and maybe Mary too.

Intuition: (1b) is *not related enough* to (1a), because, unlike (4b), it leaves Mary unattended.

2. Four ingredients

I. The following minimal translations:

(1') a.	$p \lor q$	
b.	р	
(4') b.	$p \lor (p \land q)$	(Ciardelli, et al., 2009;
		Coppock and Brochhagen, 2013)

II. A standard definition of entailment:

Entailment: Φ entails Ψ iff $\exists \chi$ s.t. $\Psi \land \chi \equiv \Phi$

III. A pretty standard Maxim of Relation:

Maxim of Relation: Let your utterance, relative to your knowledge state, entail the *question under discussion*. (cf. Roberts, 2012; Groenendijk & Stokhof, 1984)

(5) a. Was John at the party?
b. It was raining. → John likes/hates rainy parties.

The richer the semantics, the stronger this maxim.

IV. Attentive semantics (Roelofsen, 2011)

Meanings are sets of sets of worlds (in the spirit of *Inquisitive Semantics*): the possibilities that a sentence *draws attention to*.

(For a definition of the semantics, see back of right column.)

Proposition 1: (1b) does not entail (1a); (4b) does.

Proof: one cannot add possibilities to (1a) or remove worlds from it to obtain (1b). For (4b), this is possible. \Box

3. Results

I. Exhaustivity of (1)

Proposition 2: For (1b) to comply with the Maxim of Relation, the speaker must know $p \rightarrow q$ or $p \rightarrow \neg q$.

Proof: (1*a*) is entailed by $p \land q$ and by $p \land \neg q$. There is no other way for (1b) to comply with Relation.

This gives us the following derivation:

1. the speaker believes $p \rightarrow q$ or $p \rightarrow \neg q$	(Relation)
2. the speaker believes that p	(Quality)
3. the speaker lacks the belief that q	(Quantity)
4. the speaker believes that $\neg q$	

II. General result

Unattended possibilities: For meanings $\{a\}$, B, a speaker who responds $\{a\}$ to B, *leaves unattended* all $b \in B$ that properly overlap with a.

Proposition 3: The Relation implicature is that each unattended possibility or its complement follows from the information provided.

Proof: For the entailment to go through, unattended possibilities must be made to coincide with attended possibilities, or be excluded altogether.

Proposition 4: A speaker implicates for each unattended possibility that she lacks the belief that it is true.

Proof: Unattended possibilities are answers the speaker should have given, had she been able to (Quantity).

Proposition 5: A speaker implicates for each unattended possibility that it is false.

Proof: Maxim of Quality plus propositions 3 and 4.

A. Definition of attentive semantics (Roelofsen, 2011)

1. $[p] = \{\{w \mid w(p) = 1\}\}$ 2. $[\neg \phi] = \{\overline{\bigcup[\phi]}\}$ 3. $[\phi \lor \psi] = [\phi] \cup [\psi]$ 4. $[\phi \land \psi] = [\phi]_{\bigcup[\psi]} \cup [\psi]_{\bigcup[\phi]}$ where $[\varphi]_{\alpha} = \{\alpha \cap \beta \mid \beta \in [\varphi]\}$

B. Other semantics with similar results

Minimally, the semantics must lack the absorption laws.

Absorption laws: $p \lor (p \land q) \equiv p \equiv p \land (p \lor q)$

Proposition 6: (1b) and (4b) are semantically distinct only if the absorption laws do *not* hold.

Proof: Easy to see.

Proposition 7: Exhaustivity can be derived via Relation only if the absorption laws do *not* hold.

Proof: If the absorption laws hold, $(p \lor q) \land p \equiv p$ and hence p entails $p \lor q$. That means (1b) would comply with the Maxim of Relation as it is.

In particular, the following are also suitable:

- Unrestricted inquisitive semantics (Ciardelli, et al., 2009)
- Truth-maker semantics (Fine, 2013)

C. First-order cases

- For (2) and (3), the following translations would work, where:
- *x* ranges over sets of individuals, *n* over numbers.

• some denotes a context-dependent quantity.

- (2') a. $\exists x AtParty(x) \lor \neg \exists x AtParty(x)$ b. $\exists x. Ling(x) \land AtParty(x) \land |x| = some$
- (3') a. $\exists n \exists x. Marbles(x) \land InVase(x) \land |x| = n$
 - b. $\exists x. Marbles(x) \land InVase(x) \land |x| = 5$

D. The final rise contour

(Presented at UCSC S-Circle, April 2013)

Constant (2012): rise-fall-rise conveys uncertainty regarding truth of *non-dispelled alternatives*.

(6) a. [John or Mary]_F was at the party. b. [John]_F was... (final rise) \rightarrow *not sure about Mary*.

'Non-dispelled' \simeq 'unattended', hence similar results obtain if rise-fall-rise conveys *uncertain compliance with Relation*.

But the final rise has many readings (e.g., Gunlogson, 2008).

New proposal: final rise conveys uncertain cooperativity.

 \rightarrow This can pertain to Quality, Quantity, Relation or Manner.

Focus in (6b) makes uncertain Relation/Quantity more salient.

E. 'Embedded' implicatures (work in progress)

Chierchia, et al., (2008) consider (7) a challenge for Grice:

(7) a. Every student read [Othello or King Lear]_F.
b. Every student read [Othello]_F. → *no one read King Lear*

But this is already predicted by the present setup...

F. References

Chierchia, G., Fox, D., & Spector, B. (2008). The grammatical view of scalar implicatures and the relationship between semantics and pragmatics. • Ciardelli, I., Groenendijk, J., & Roelofsen, F. (2009). Attention! Might in inquisitive semantics. • Constant (2012). English rise-fall-rise: a study in the semantics and pragmatics of intonation. • Coppock, E., & Brochhagen, T. (2013). Raising and resolving issues with scalar modifiers. • Fine, K. (2013). Truth-maker semantics for intuitionistic logic. • Griee, H. (1975). Logic and conversation. • Groenendijk, J., & Stokhof, M. (1984). Studies on the semantics of questions and the pragmatics of answers. • Gunlogson, C. (2008). A question of commitment. • Roberts, C. (2012). Information structure in discourse: Towards an integrated formal theory of pragmatics. Roelofsen, F. (2011). Information and attention. • Sauerland, U. (2004). Scalar implicatures in complex sentences. Semantics and Philosophy in Europe Saint Petersburg State University June 10-14 2013

Inquisitive pragmatics: Entailment as relatedness

Matthijs Westera <u>M.Westera@uva.nl</u>

Institute for Logic, Language and Computation, University of Amsterdam

Summary

- I present a Gricean account of *exhaustivity implicatures*.
- The main challenge for existing 'Gricean' accounts, the *epistemic step*, is overcome via the *Maxim of Relation*, by adopting a richer notion of meaning.
- Pragmatic reasoning is sensitive to the possibilities that a speaker *draws attention to* (cf. Ciardelli, *et al.*, 2009).

Acknowledgements

Many thanks to Jeroen Groenendijk, Floris Roelofsen, Ivano Ciardelli, Elizabeth Coppock, and the audience of the linguistics S-circle at UCSC, for valuable comments. Financial support from the Netherlands Organisation for Scientific Research (NWO) is gratefully acknowledged.

 $[\]rightarrow$ i.e., a one-sided account of numerals/quantifiers.